

SUPERVISION DE SÉCURITÉ - SECURITY INFORMATION AND INCIDENT MANAGEMENT

HERVÉ DEBAR TÉLÉCOM SUDPARIS

Information systems are targets of attacks

Resources Information

Full protection is impossible or impractical

Limits use and scalability Cost Management

Detecting attacks as early as possible is the next best option

And deploying appropriate remediation

Iames P Anderson Co	TABLE OF CONTENTS
A sum of the solution co.	
Box 42 Fort Washington, Pa. 19034	
215 646-4706	Page
	1.1 Introduction 1
	1.2 Background 1
	1.3 Summary
	2. Infeats
	2.2 Gaining Access to the System - Evternal Denstration 6
	2.3 Internal Penetration
	2.3.1 The Masquerader 11
	2.3.2 Legitimate User 12
	2.3.3 Clandestine User 14
COMPUTER SECURITY THREAT	2.3.4 Clandestine User Countermeasures 14
MONTOPING AND SUBJECT AND	2 Obvious of Computer line 17
	3.1 Introduction of Complet 058
	3.2 The Unit of Computer Work - The Job or Session
	3.3 Time Parameters 18
	3.4 Dataset and Program Usage
	3.5 Monitoring Giles and Devices
	3.6 Group Statistics
	4. Structure of a Surveillance System
CONTRACT 79F296400	4.1 Introduction 20
	4.1.2 Sorting Audit Records
	4.1.3 Session Record Builder
	4.1.4 Surveillance Program
	4.2 Monitoring Files
	5. Adapting to SMF Data
	5.1 Relevant SAP Records
February 26, 1980	5.4 Utner Surveillance 10015
	Sta Summer
	6. Development Plans
Revised:	6.1 Introduction
	6.2 Surveillance Subsystem Functional Description
April 15, 1980	6.3 Tasks
	6.4 Trace Subsystem Functional Description
	5.5 Tasks
	0.0 Integration of Subsystems

TIMELINE AND SCOPE

Intrusion detection concepts (1985) · Misuse detection · Anomaly detection Intrusion detection prototypes (1990) IDES & NIDES · Wisdom & Sense Attacks Intrusion Detection Working Havstack Group @IETF ISS RealSecure & Snort (1996) Detection December 1998: first meeting, Washington DC Specifics Security Information and Event Correlation Management (SIEM) CVF Logging · Tivoli Rosk Manager Remediation loC • RFC4765 Signatures Situations QRadar CTI Statistics Statistics TBD ... Cyber-Threat Intelligence (CTI) Security Orchestration, Protocol RFC4765 Analytics and Reporting compliance (SOÁR) CTL
 Remediation Analytics Security Operations and Incident . Management

https://csrc.nist.rip/publications/history/

OVERALL MAPE-K LOOP

Supervision is about information management

Logs and others Processing Decision Feedback & control

Many actors with conflicting interests

Intrusion detection systems (IDS)

Monitor systems and networks to create or collect execution traces Analyse them (in real time) to detect issues and provide alerts

Security Information and Event Management (SIEM) platforms

Analyse events and alerts to triage them according to their impact; identify incidents Plan: select potential responses to incidents Execute: push recommendations to system and network analysts

Security Orchestration, Analytics and Reporting (SOAR) platforms

Analyse further the collected information (events, alerts, incidents) Plan: assess response plans according to business impact Execute: partially automate deployment of response plans

Segmentation of the network in zones

Sensitivity Quantity of exchanges

Sensors and log feeds deployed to collect traces and detect malicious behaviour

Private network to gather event and alert feeds

SIEM platform to manage events, alerts and incidents Technical support of Security Operating Centre (SOC)

TYPICAL ARCHITECTURE

TWO PROBLEMATIC CHARACTERISTICS

INTRUSION DETECTION AND PREVENTION SYSTEMS FROM EVENTS AND TRACES TO ALERTS

Process traces of execution

Representative of the activity of a « system » Enable differentiation between normal and malicious activity

Separate appropriate from malicious activity

Rationale for suspicion (what) « Evidence » if possible (why) Levels of suspicion frequently used

Raise alert: symptom of misbehaviour

DATA SOURCES

Network packets

Carriers of attacks (e.g. malware in payload) Symptoms of compromise (e.g. connection to Command&Control infrastructure)

Network aggregates

Deviations in traffic patterns (ports, conversations, volume)

Network infrastructure

Use of the Domain Name System (DNS) for command and control Manipulation of the routing infrastructure to reroute traffic or hide malicious activity

Traces provided by applications related to their runtime behaviour

Web servers in particular Representing specific activity

Usually collected through system mechanisms

Unix: /var/log Syslog

Also includes documents

Complicated parsing

Underestimated research issue

Trustworthiness Performance

Kernel logs

Intercepted very low in the execution path (assembly language) Focusing on malware detection

Interest in the Android ecosystem

Understand interactions between apps and supporting libraries Call-back mechanism obscures malicious activities

Hardware-based capture ?

SYSLOG

Generic logging infrastructure

Entry composed of

Timestamp Hostname Process Priority PID Message

Extremely useful both for event and alert management

But need stronger semantic for « Message »

Normalization, canonization and labelling

Syntax of the data Semantic of the data

Transformation to meet needs of detection algorithms

E.g. transform text data in numerical form

Encrypted data flows

Access limited to the outer envelope of the data

Voluminous data flows

Limits transportation and storage

Personally Identifiable Information (PII)

Conflict between technical data and PII: network addresses

Objective : generate incidents from alerts and events

Intrusion detection sensors

Deployed in the field Collect event information Produce alerts

Analysis techniques

Misuse detection Anomaly detection

18

FROM EVENT TO INCIDENT

Gather knowledge about attack processes

Model occurrence of attack in traces

Signatures (indicators of compromise

Detect presence of such occurrence in current trace

Advantage

Alerts are qualified by a root cause

Drawback Management of attack proc

Management of attack process knowledge Expertise and time

Gather knowledge about process behaviour

Expected behaviour (e.g. standards and policies)
Behaviour learned through observation
Machine learning

Detect presence of such occurrence in current trace

Define deviation from the norm

Advantages

Unknown attack processes are detected by their side effects

Drawbacks

Assumption of detectable side effect Diagnosis of alert impact Selection of behavioural model (many possibilities) Attack-free training (ground truth)

Understand and specify the detection target

Which attacks (or attack categories), how reliable

Classic evaluation metrics

Significance of false positives and false negatives improvements Ability to compare one's work to the state of the art

Base-rate fallacy

Magnitude of difference between the volume of attacks and the volume of normal activity in traces

Trustworthy and efficient logging

Test, evaluation and validation

Methodologies and metrics Including relevance "in the field" Libraries, tools, ... for practical undertaking of evaluation and validation

27

SECURITY INFORMATION AND EVENT MANAGEMENT

« THE BACK-END »

TYPICAL ARCHITECTURE

Blue part

Personnel component essential

Managed service model

24

Definition of

Schema: structure and semantic of messages

Encoding: transformation of message in bit string

Transport protocol

Format	Owner	Transport	Encoding	Structure	Number of attributes
CEF	HP/Arcsight	Syslog	Key/value	Flat	117
LEEF	IBM/QRadar	Syslog	Key/value	Flat	50
CIM	DMTF	Any	(XML)	UML	58
CADF	The Open Group (NetlQ)	Any	(JSON)	Classes	48
CEE	MITRE	(Syslog)	JSON, XML	Structured	56
IDMEF	IETF	IDXP	XML	UML	166

Examples

Institut Mines-Télécom

Hiet, G., Debar, H., Ménouar, S., & Houdebine, V. (2015, November). Etude comparative des formats d'alertes. In C&ESAR (Computer & Electronics Security Applications Rendez-vous) 2015 (pp. 125-148).

Objectives

Reduce the number of alerts to process Automatically identify false positives Group alerts into incidents Propose remediations

Correlations techniques

Alerts sharing the same characteristics (addresses, ports, etc.)
Alerts associated with contextual information
Environment

- Cyber-Threat Intelligence
- Information exchange

Obtain situational awareness

Appropriately assess risk of events

Impact on IT infrastructure Impact on organization Applicability to new architectures and attack patterns (loosely controlled systems, IoT, ...)

Long-term diagnosis

Evaluate past decisions regarding incidents in the light of new information Posture analysis (continuous risk assessment) Efficiency analysis (detection coverage, decision capability)

Decision support system

Reporting and attribution (and their consequences on detection and correlation)

Test, evaluation and validation

MITIGATIONS AND COUNTERMEASURES

OBJECTIVE: BLOCK ATTACKS BEFORE SIGNIFICANT DAMAGE

TOOLS AND TECHNIQUES

Intrusion Prevention Systems

Immediately apply remediation to the data stream upon detection Block or terminate connections at the network level Change content (a.k.a. virtual patching) in network packets or instruction sequences

Traffic management for denial of service attacks

Dedicated tunnels Anycast Sort of « out of tune » in recent years

Impact and risk assessment

Understand the business risk associated with the incident Understand potential collateral damage of reacting / doing nothing

INTELLIGENCE AND ANALYTICS

Relevant normalized knowledge sources

Common vulnerabilities and exposures (CVE) Common vulnerability scoring system (CVSS) Common Weakness Enumeration (CWE) Common Attack Pattern Enumeration and Classification (CAPEC) Adversarial Tactics, Techniques & Common Knowledge (ATT&CK)

Honeypots and honeynets

Cyber-Threat Intelligence

Understand malicious activity in the Internet Identify relevant threats and deploy detection/protection means Share compromise information Information Sharing and Analysis Centres

31

Provide relevant and actionable decisions for mitigating and removing threats

Effectiveness of threat removal Cost/gain analysis

Deploy appropriate counter-measures in complex distributed systems

Including legal challenges (e.g. device identification and ownership) Feasibility of responding in cyber-physical systems

Test, evaluation and validation

Security Operations and Incident Management increasingly relevant

Wide range of connected devices Complex dynamic systems ► DevOps

Require skilled personnel

Automation Decision support

Biggest challenge: test, validation and evaluation

